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ABSTRACT

The flow of messages in a message-switched data communication net-
work is modeled in a continllods dynamical state space. The state vari-
ables represent message storage at the nodes and the control variables
represent message flow rates along the links. A deterministic linear
cost functional is defined which is the weighted total message delay
in the network when we stipulate that all the message backlogs are
emptied at the final time and the inputs are known. The desired mini-
mization of the cost functional results in a linear optimal control
problem with linear state and control variable inequality constraints.

The remainder of the thesis is devoted to finding the feedback
solution to the optimal control problem when all the inputs are con-
stant in time. First, the necessary conditions of optimality are
derived and shown to be sufficient. The pointwise minimization in time
is a linear program and the optimal control is seen to be of the bang-
bang variety. Utilizing the necessary conditions it is shown that the
feedback regions of interest are convex polyhedral cones in the state
space, A method is then described for constructing these regions from
a comprehensive set of optimal trajectories constructed backward in
time from the final time. Techniques in linear programming are em-
ployed freely throughout the development, particularly the geometrical
interpretation of linear programs and parametric linear programming.

There are several properties of the method which complicate its
formulation as a compact algorithm for general network problems. How-
ever, in the case of problems involving networks with single destina-
tions and all unity weightings in the cost functional it is shown that
these properties do not apply. A computer implementable algorithm is
then detailed for the construction of the feedback solution.
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Chapter 1

INTRODUCT ION

1.1 Introduction to Data Communication Networks

A data communication network is a facility which interconnects a
number of data devices (such as computers and terminals) by communica-
tion channels for the purpose of transmission of data between them.
Each device can use the network to access some or all of the resources
available throughout the network. These resources consist primarily
of computational power (CPU tift#), memory capacity, data bases and
specialized hardware and software. With the rapidly expanding role
being played by data processing in today's society (from calculating
interplanetary trajectories to issuing electric bills) it is clear
that the sharing of computer resources is a desirability. In fact, the
distinguished futurist Herman Kahn of the Hudson Institute has forecast
that the "marriage of the telephone and the computer"” will be one of
the most socially significant technological achievements of the next
two hundred years.

Research in areas related to data communication networks began in
the early 1960's and has blossomed into a sizable effort in the 1970's.
The ARPANET (Advanced Research Projects Agency NETwork) was implemented

in 1970 as an experimental network linking a variety of university,

N
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industrial and government research centers in the United States. Cur-
rently, the network connects about one hundred computers throughout
the continental United States, Hawaii and Europe. The network has
enjoyed considerable success and as a result several other major net-
works are presently being planned.

Following Kleinrock [1976], we now describe the basic components
of a data com ‘nication network and their functions. Fundamentally,
what is known as the communication subnetwork consists of a collection
of nodes which exchange data with each other through a set of links.
Each node essentially consists of a minicomputer which may have data
storage capability and which serves the function of directing data
which passes through the node. The links are data transmission chan-
nels of a given data rate capacity. The data devices which utilize
the communication subnetwork, known as users, insert data into and
receive data from the subnetwork through the nodes. See Figure 1.1.

A more detailed description of the network in the context of the
analysis of this thesis is presented in Chapter 2.

The data travelling along the links of the network is organized
into messages, which are groups of bits which convey some information.
One categorization of networks differentiates those which have message
storage at the nodes from those which do not. Those with storage are

known as store-and-forward networks. BAnother classification is made

according to the manner in which the messages are sent through the

network. In a circuit-switching network, one or more connected chains
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of links is set up from the node of origin to the destination node of
of the message, and certain proportions of data traffic between the
origin and destination are then transmitted along these chains. The
otiier category includes both message switching and packet switching

networks. In message-switching, only one link at a time is used for

the transmission of a given message. Starting at the source node the
message is stored in the node until its time comes to be transmitted
on an outgoing link to a neighboring node. Having arrived at that node
it is once again stored until being transmitted to the next node. The
message continues to traverse links and wait at nodes until it finally

reaches its destination. Packet-switching is fundamentally the same

as message switching, except that a message is decomposed into smaller
pieces of maximum length called packets. These packets are properly
identified and work their way through the network in the fashion of
message switching. Once all packets belonging to a given message arrive
at the destination node, the message is reassembled and delivered to

the user. 1In this thesis we shall be concerned with store-and-forward

networks which employ message(packet)-switching.

1.2 Discussion of the Message Routing Problem

There is a myriad of challenging problems which must be confronted
in the design and operation of data communication networks. Just to
name a few, there are the problems of topological design (cost effective

allocation of links and their rate capacities), detection of equipment
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failures and reconfiguration, and the routing of messages through the
network from their nodes of origin to their nodes of destination. The
latter problem is one of the fundamental issues involved in the opera-
tion of networks and as such has received considerable attention in the
data-communication network literature. It is clear that the efficiency
with which messages are sent to their destinations determines to a great
extent the desirability of networking data devices. The subjective term
"efficient" may be interpreted mathematically in many ways, depending on
the specific goals of the network for which the routing procedure is
being designed. For example; ofle may wish to minimize total message
delay, maximize message throughput, cost. etc. In general, this issue

is referred to as the routing problem. We shall be concerned with the

minimum delay message routing problem in this thesis.

Routing procedures can be classified according to how dynamic
they are. At one end of the scale we have purely static strategies in
which fractions of the message traffic at a given node with a given
destination are directed on each of the outgoing links, where the frac-
tions do not change with time. On the other end of the scale we have

completely dynamic strategies, which allow for continual changing of

the routes as a function of time, and also as a function of message
congestion and traffic requirements in the network. Static procedures
are easier to implement than dynamic ones, but lack the important
ability to cope with changing congestion and traffic requirements in

the network possessed by dynamic strategies.




-14-

Although a large variety of routing procedures have been developed
and implemented in existing networks (such as ARPANET) the lack of a
basic model and theory able to accommodate various important aspects of
the routing problem has made it necessary to base the procedures almost
solely on intuition and heuristics. Of concern here is the fact that
previous techniques have been addressed primarily to static routing
strategies, .hich lack the previously discussed advantages of dynamic
strategies. The best known approach to static message routing in '

store-and-forward data communications networks is due to Kleinrock

[1964]. This approach is based upon queueing theory and we describe

the principal elements here briefly for comparison with the dynamic
method which we shall discuss subsequently:

(a) The messages arrive from users to the network according to
independent constant rate Poisson processes and their lengths are
assumed to be independent exponentially distributed and independent of
their arrival times.

(b) At subsequent nodes along the paths of the messages, the
lengths of the messages and their interarrival times become dependent,
a fact which makes the analysis extremely difficult. To cope with this

problem, the famous independence assumption is introduced, requiring the

messages to "lose their identities" at each node and to be assigned
new independent lengths.
(c) Once a message arrives at a node, it is first assigned to one

of the outgoing links and waits in queue at that link until it is



transmitted.
(d) Based on queueing analysis, the average delay in steady state

experienced by messages in each link is calculated explicitly in terms

of the various arrival rates, average message length and the capacity
of the link.

(e) A routing procedure is then found to minimize the average
delay ove. the entire network. See Cantor and Gerla (1974].

The routing procedure thus obtained is static, namely constant in
time and a function only of the various average parameters of the sys-
tem. 1In the parlance of control theory, which is the language which we
shall be using for much of this thesis, such a strategy is referred to
as open-loop.

Since Kleinrock's model was proposed in 1962, researchers in the
area have repeatedly expressed the desire to find approaches to other
aspects of the routing problem. In particular, the goal is to find
an approach

(1) in which the independence assumption is not required,

(i1) that will be able to handle transients and dynamical situa-

tions and not only steady state, and

(iii) that can lead to optimal closed-loop control strategies,
namely strategies that change according to the congestion
in the network.

Requirement (i) is desirable since the independence assumption may

be quite inappropriate in variocus situations. Furthermore, it is not




easy to assess the validity of this assumption for a given network.

The desirability of requiremenﬁ (i1) has been discussed previously.
Finally, perhaps the most important requirement is (iii), for it is a
fundamental fact of optimal control theory that closed-loop strategies
are much less sensitive than open-loop ones to perturbations in the
parameters of the system. Hence, occurrences such as link and node
failures or u-~xpected bursts of user input to the network are accom-
modated much better by closed-loop strategies.

It is pointed out in Segall [1976] that the traditional queueing
theory approach can in principle be adapted to closed loop strategies,
but that the number of states required would be immense. This approach
looks at each message or packet as an entity, and therefore the state
of the network is described by the number and destination of messages
(packets) in each of the buffers. Therefore, in a network with N nodes,
B outgoing links per node in the average and buffers of maximum capacity
of M messages (packets), the number of states is approximately (BNM)N-l, i
which is an extremely large number even for the smallest of networks.

Segall [1976] has introduced a model for message routing which
is capable of achieving requirements (i)-(iii) above. His approach is
to model the flow of messages in a message (packet)-switched store-and-
forward data communication network in a continuous dynamical state
space setting. The continuous nature of the state is justified by
recognizing that any individual message contributes ver? little to the

overall behavior of the network, so that it is not necessary to look
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individually at each of the messages and their lengths. In this vein,
it makes more sense to regard the network in the more macroscopic
fashion of Segall's model.

Having established the model, Segall expresses the minimum delay

dynamic routing problem as a linear optimal control problem with linear

state and control variable inequality constraints for which a feedback

solution i~ sought. Should such a solution to this problem be obtained,

the resulting strateqgy would be dynamic and closed-loop. The model and

associated optimal control problem are discussed briefly in the next

section and are presented in detail in Chapter 2.

1.3 Thesis Overview

1,3.1 Objective of Thesis

The goal of this research is to obtain feedback solutions to the
linear optimal control problem with linear state and control variable
inequality constraints suggested by Segall for the message routing
problem. Undoubtedly, the principal difficulty presented by this prob-
lem is the presence of state variable inequality constraints. This
contention is supported by the observation that very few feedback solu-
tions have been found for optimal control problems with this type of
constraint. We clearly shall have to exploit the special properties
of our problem (such as linearity and the structure of the dynamics and
constraints) to develop new theory and techniques capable of producing

feedback solutions.




1.3.2 Approach

We begin our discussion of approach by briefly describing Segall's

state space model. In the model the state variables represent the quan-

tity of messages stored at the nodes, distinguished according to node
of current residence and node of ultimate destination. In reality, the
measure of message storage at the nodes is a discrete variable (such as
number of me: "ages, packets, bits, etc.). However, in the spirit of
viewing the network from a macroscopic point of view, we assume that
the units of data traffic are such that after appropriate normalization
the states may be approximated closely by continuous variables. The

control variables represent the flow rate of traffic in the links, where

each control represents that portion of a given link's rate capacity
devoted to transmitting messages of a given destination. Finally, the
inputs are the flow rates of messages entering the network from the
users. In this thesis, we consider the inputs to be deterministic

functions of time. The dynamical equation which represents the flow of

messages in the network is

x(t) = B u(t) + a(t) (L. 1)

where x(t), u(t) and a(t) are the vectors of state variables, control
variables and inputs respectively. In the static flow literature the
matrix B is known as the "incidence matrix", and it is composed solely
of +1's, =-1's and 0's which capture the node-link configuration of the

network. We also have several essential constraints. The state varia-
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ble inequality constraints are x(t) > 0 for all t, since the message

storage must always be non-negative. The control variable inequality

T

constraints are u(t) € U for all t, where U = {u:u > 0 and D u <
Here D is a matrix of 0's and +1's and C is a vector of link rate
capacities. These constraints represent flow non-negativity and link
rate capacity constraints respectively.

We 1ow associate with the dynamical state space model the linear

cost functional

1%
f:T
J = a x(t)dt (1..2)
o
where i(to) = X, is given, te is given implicitly by i(tf) = 0 and a

is a column vector of constant weighting factors. The implications of
the stipulation that i(tf) = 0 are discussed in Section 2.4. We note
for now that whcn 2 is all 1's, then J is exactly the total delay ex-
perienced by all of the messages traveling through the network on
Ito, tf]. By adjusting the values of the elements of a, J may be made
to represent a desired form of weighted total delay. The optimal
control problem which represents the dynamic feedback message routing
problem is:
Find the control u(t) as a function of time and state,

E(t) = E(t' 5), that will bring the state from i(to) = 50

(given) to iltf) = 0 while minimizing J subject to the dynam-

ics and state and control variable inequality constraints.
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Our approach to solving the above problem shall now be described
briefly. We begin by deriving the necessary conditions of optimality
associated with the optimal control problem and prove that they are
also sufficient. Realizing that there is extremely little hope of ob-
taining at this time a feedback solution for the general deterministic
input problem, we restrict the inputs to be constant in time. The
necessary conditions indicate that with this assumption the optimal
feedback control is regionwise constant over the state space. We then
develop a procedure which utilizes the necessary conditions to construct
all of these regions and identify their associated optimal controls.
Although the procedure is not readily implementable on the computer for
problems involving general multi-destination networks, we are able to
utilize special structural properties of the problem to devise a com-
puter algorithm for problems involving single destination networks with

all unity weightings in the cost functional.

1.3.3 Preview of Results

In this section we elaborate on the discussion of approach of the
previous section and simultaneously describe the highlights of the
results which are obtained.

According to the necessary conditions which are derived for the

problem, any optimal control must satisfy

u*(t) = ARG MIN (};T(t)E u(t)) (1.e3)
u(t)el

pointwise in time. Here, )A(t) is the vector of costate variables cor-

AR AT~ T
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responding to the state x(t) and is given by a linear differential
equation with free terminal conditions. Of particular interest is the
fact that a costate may exhibit discontinuities at times when its
associated state is traveling on a boundary arc x = 0. We are also
able to prove the significant result that the necessary conditions of
optimality are also sufficient.

For given values of the costate vector, the pointwise minimization
is a linear program. Owing to fundamental properties of linear pro-
gramming we are able to deduce the following: (i) the optimal control
always lies at boundary points of U, and therefore is of the bang-bang
variety; (ii) non-uniqueness of the optimal control is a possibility;
(iii) the minimization need not be performed at every time, but may be
solved parametrically in time to find the optimal bang-bang controls and
switch times.

Note that all of the above results apply for general deterministic
inputs. Henceforth we restrict ourselves to the special case in which
the inputs are constant in time. 1In this case, the bang-bang nature of
the optimal control implies that the slope of the optimal state trajec-

tory is piecewise constant in time. We are now able to state and prove

sufficiency conditions under which any initial state g(to) = X, is
controllable to E(tf) = 0 for a given network with given set of constant
inputs.

Using the necessary conditions, we are able to show that the
optimal control is regionwise constant and that the regions are convex

polyhedral cones in the state space. A procedure is then developed
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which employs the spirit of dynamic programming to construct these cones
and their associated optimal controls by a sequence of backward optimal

trajectories propagating from the final time t When a sufficiently

£
large variety of these trajectories is utilized to construct regions,
the union of these regions fills up the state space with optimal con-
trols, thus constituting the feedback solution.

In order to solve for the backward optimal trajectory, we muét
propagate the costates backward in time according to their differential
equation and solve the minimization problem (1.3) for all solutions.
However, there is a question regarding the appropriate values of the
costates which realize a particular backward optimal trajectory through
(1.1) and (1.3). The resolution to this problem is geometrical in
nature in that it considers the Hamiltonian function associated with
the necessary conditions to be a hyperplane which is continuously rota-
ting about the constrained region of message flow while remaining
tangent to it. As the costates are the coefficients of the hyperplane,
their appropriate values are determined by orienting the hyperplane in
a prescribed fashion with respect to the constraint region. This argu-
ment freely employs geometrical concepts in linear programming.

We are unable to devise a computer algorithm to implement the
above procedure for general multi-destination network problems due to
several complicating properties. However, we are able to show that for
problems involving single destination networks with all unity weightings

in the cost functional these complicating properties do not apply. A



~23-~

computational implementation of the procedure is then readily formu-
lated and a computer example is performed. It turns out that one of
the computational tasks of the algorithm is extremely inefficient.

This task is involved with the problem of finding all of the non-unigue
extremal solutions to a linear program. As a consequence, the computa-
tional feasibility of the algorithm is contingent upon the development
of a more =fficient technique for solving this problem.

In evaluating the ultimate desirability of the feedback
approach, we must take into account the fact that considerable computer
storage may be required to implement the feedback solution on line.
This results from the necessity of storing all of the linear inequali-
ties which specify the convex polyhedral cones in the state space,
and there may be many such cones. A tradeoff is therefore in order
between the storage involved to implement closed-loop solutions and

the computation involved in the implementation of open loop solutions.

1.4 Synopsis of Thesis

The purpose of this section is to provide a brief summary of

the remaining chapters.

Chapter 2

The state space model and optimal control problem of Segall are
described in detail. A brief discussion is devoted to two possible
open-loop solutions: The first employs linear programming through dis-

cretization in time and the second is an adjoined penalty function

T
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technique. Note that although they are open-loop, these techniques

are dynamic.

Chapter 3

In this chapter we present the procedure for the synthesis of a
feedback solution to the optimal control problem with constant inputs.
We begin by deriving the necessary conditions of optimality and prove
that they are sufficient. Based upon these conditions we characterize
the feedback regions of interest as convex polyhedral cones. After
providing a few motivating examples, we present the algorithm for the
backward construction of the feedback control. Finally, we isolate
and describe in detail those properties of the algorithm which compli-

cate its computational implementation.

Chapter 4

The geometrical linear programming interpretation is utilized to
construct proofs that the complicating properties of the algorithm of
Chapter 3 do not apply for problems involving single destination net-
works with all unity weightings in the cost functional. This fortuitous
situation enables us to construct an algorithm which is implementable
on the computer. An example is run for a five node network. We then
present thoughts on how the techniques of this chapter may be applied
to general multi-destination network problems with non-unity weightings

in the cost functional.

al®



Chapter 5
In this chapter we comment on various aspects of the approach
in general and of the feedback control algorithm in particular. Some
insight is provided into related topics not specifically discussed in
j preceding chapters. We then summarize our results, present the spe-

cific contributions and make suggestions for further work in this

o A A A 50

area.
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Chapter 2
NEW DATA COMMUNICATION NETWORK MODEL AND OPTIMAL

CONTROL PROBLEM FOR DYNAMIC ROUTING

2.1 Introduction

In this chapter, the flow and storage of messages in a message-
(packet) -switched store-and-forward data communication network are ex-
pressed in a dynamical state space setting. This model for routing was
introduced by segall [1976]. The principal elements of the model - state
variables, control variables, and inputs - are defined to represent
mathematicuily the fundamentals of network operation: storage, traffic
flow and message input respectively. Emerging from this characteriza-
tion is an ordinary linear vector differential equation which dynami-
cally describes the storage state of the network at every time. State
variable positivity constraints and control variable capacity con-
straints, both linear, are imposed as an essential part of the model.
Presently, we assume that the inputs are deterministic functions of
time, representing a scheduled rate of demand.

Arising naturally out of the model as defined is a linear inte-
gral cost functional which is equal to the total delay experienced by
all of the messages travelling in the network. Owing to the generality
of our expression, we are also able to formulate a linear cost function-

al which corresponds to a measure of weighted message delay in the net-
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work. Combining the minimization of the cost functional with the dy-
namics and associated constraints, we obtain a linear optimal control
problem with linear state and control variable inequality constraints for
which we seek a feedback solution. We then discuss in some detail how
the assumptions inherent in the optimal control problem formulation re-
late to the real world situation of data communication network message
routing op¢ ration.

The advantages of this approach were discussed in Section 1.2.
The principal disadvantage is as' ciated with tbe difficulty of solving
state variable inequality constrained optimal control problems. This
is particularly true when a feedback solution is sought. The problem
is placed in perspective by providing a summary of the previous work
which has been performed in this area and pointing out the need for the
development of additional theory for our particular formulation. This
discussion sets the stage for the contributions to this problem area
which are achieved in subsequent chapters.

Although the principal goal of the thesis is to obtain closed-
loop solutions to the optimal control problem, there are several ap-
proaches to obtaining open-loop solutions which are conceptually
straightforward and are therefore of some interest. Two such approaches
are reported on briefly at the end of this chapter: linear programming

through discretization and a penalty function method.




Notation 2.3 E(1)

2.2 Basic Elements of the State Space Model

2.2.1 Topological Representation

We visualize data networks graphically to consist of a collection
of nodes connected by a set of links between various pairs of the nodes.
In Section 1.1 we presented a discussion of the general function of
nodes and links in the network. In our model, we shall assume that the
links are simplex, that is, carry messages in one direction only from
the node at the input end to the node at the output end.

In a network consisting of N nodes we associate with each node
an integer in the set {1, 2, ..., N} and denote this collection of nodes
by N. The link connecting node i to node k is denoted by (i,k), and

the collection of all links in the network is

. A , . ; :
Notation 2.1 L = {(i,k), such that i,k € N and there is a direct

link connecting i to k}.
We now denote

A : :
Notation 2.2 Cik = capacity of link (i,k) in units of traffic/unit

time, (i,k) € L
and for every i € N denote

collection of nodes k such that (i,k) € L,

ne>

ne>

I(i) collection of nodes % such that (%2,i) € L.

In Figure 2.1 we depict a graphical representation of such a data com-

munication network.
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USERS

W/

Figure 2.1 Data Communication Network Topology

2.2.2 Message Flow and Storage Representation

In accordance with the operational philosophy of the network,
the users at each node in the network may input messages whose ultimate
destinations are any of the other nodes in the network. We characterize

this message traffic flow input to the network by:

A : i . : =
Notation 2.4 az(t) = rate of traffic with destination j arriving

ey




at node i (from associated users) at time t. 4

The message traffic from each user is first fed into the associated node
and either immediately transmitted on an outgoing link or stored for 1

eventual transmission. Also, each node may serve as an intermediate

storage area for messages entering on incoming links enroute to their
destinations. Once a message reaches its destination node, it is im-
mediately forwarded to the appropriate user without further storage.
Hence, at each node i € N of the network at any point in time we
may have messages in residence whose destinations are all nodes other
than i. Let us now imagine that at each node i € N we have N-1 "boxes";
and that in each of these boxes we place all the traffic (messages,
packets, bits, etc.) whose destination is a particular node, regardless
of its origin. We do this for all possible destinations 1, 2, ... (i-1),

(i+l), ...N. We now define the state variables of our model as

j A . .
Notation 2.5 xi(t) = amount of traffic at node i at time t whose
final destination is node j, where

i,5eN, i# 1.

The amount of traffic residing in each box at any time t is mea-
sured in some arbitrary unit (messages, packets, bits, etc.). Strictly
speaking, the states are therefore discrete variables with quantization
level determined by the particular unit of traffic selected. However,
we shall assume that the units are such that after appropriate normali-

3

zation the states x; can be approximated by continuous variables. The

rationale underlying this approximation is presented in Section 1.2.
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We simply repeat here that this macroscopic point of view regarding
messages is justifiable in relation to the overall goals of desirable
network operation. Note that in a network consisting of N nodes, the
maximum number of state variables as defined above is N(N-1), which most
certainly is reasonable when compared to the huge number of states
associated with finite-state models (see Section 1.2).

3

There is a fundamental difference between the states xi described

here and the message queues of the traditional approach. In our model,
when a message with destination j arrives at node i from either outside

the network (i.e., from users) or from some adjacent node, it is classi-

J
i

fied as belonging in the "box" x;, and as such is associated with the
node i. When its time comes to be sent, the routing strategy to be
developed in subsequent chapters assigns the message to be sent along
some outgoing link (i,k),k € E(i). In previous models (e.g., Cantor and
and Gerla [1974]) messages arriving at node i are immediately assigned
to some outgoing link (i,k),k € E(i), by the routing strategy, there to
await tra&smission. Hence, at least in an intuitive sense, the decision
as to what direction to send a message is made in our model at a later

time, thus enabling the strategy in force to make a more up-to-date

decision. The ultimate performance of our strategy should benefit from

this characteristic.
The final element of our message flow representation is the de-
scription of the allocation of link flow capacity. Each link emanating q

from a particular node i is shared by some or all of the up to (N-1)
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types of messages stored at time t at node i. This now gives rise to

the definition of the control variables of our state space model:

Notation 2.6: uzk(t) é portion of the rate capacity of the link (i,k)
used at time t for traffic with final destina-
tion j.

So defined, the controls are the decision elements of the model available

to be adjusted at the command of the routing strategy. The designation

of the states corresponding to a particular node and controls correspond-

ing to a particular link are illustrated in Figure 2.2.

Figure 2.2 Illustration of State and Control Variables
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2.3 Dynamic Equations and Constraints

We are now ready to state the dynamic relationship between the
elements of our state space model. Assuming the inputs are determin-
istic functions of time, the time rate of change of the number of mes-

sages contained in each box is given by

-3 3 j 3
ey =adt) - 2w+ L w.(v) (2.1)
% 3 keB(i} *° ger(i) ‘i

2#3

103 & N, 3 # &

That is, the box corresponding to the state xz is increased by the rate
of messages arriving from users (ai(t)) and messages arriving on in-
coming links (uzi(t), 2 € 1(i), ® # j) and depleted by the rate of

messages departing on outgoing links (ui k € E(1)). A pictorial

K’
depiction of the message flow situation corresponding to equation (2.1)
is given in Figure 2.3.

The ordinary differential equation formulation of equation (2.1)
is valid for deterministic inputs. When the inputs are stochastic, we
must express the relationship in the incremental fashion of stochastic
differential equations and properly define the nature of the input pro-
cess. However, the important point here is that the state space de-
scription of message flow and storage presented in Section 2.2 is suffi-
ciently general to accommodate a wide variety of input processes.

An essential feature of the model is the set of constraints we

must impose on the state and control variables. 1In order for the
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¥ k € E(i)

¥ L e I(1)

Node i

Figure 2.3 Elements of Message Flow
Dynamical Equation




~35-

mathematical statement of our problem to make physical sense, we must
insist on non-negativity of the message storage state variables and of

the flow control variables:

x](t) >0 ¥t (2.2)
and

3
uj, () >0 ¥ t. (2.3)

The rate capacity constraints on each transmission link is expressed by

j%l uik(t) pAL= P v.t,: |

¥(i,k) €L, § #1i. (2.4)
Constraints (2.2)-(2.4) are the only ones which shall be dealt with
explicitly in this thesis. The assumption is therefore made that the
storage areas containing the messages corresponding to the state vari-
ables are infinite in capacity. In practice, of course, these areas
will be limited in size, so that we may wish to insist on upper bounding
state variable constraints. Possible forms of these constraints are
xi < Sz or ;;i xz s Si depending on the actual assignment of message

storage in a node.

2.4 Performance Index and Optimal Control Problem Statement

As indicated in Section 1.2, one of the major problems associated
with routing strategies predicated upon queueing models is the require-
ment of the independence assumption in order to derive the closed-form

expression for the total message delay in the network. This assumption
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may be at great variance with the physical realities of the situation.
On the other hand, optimal control oriented formulations such as ours
require only a functional expression for the quantity of interest in
terms of the state and control variables of the model. By design, the
method in which we have defined the state variables gives rise to possi-
ble performance indices which are most appropriate in this application.
For example, ' "serve that if x(t) is the amount of message traffic
residing in some box at time t, then the quantity

=
f

x(t)dt (2.5)

%

gives the total time spent in this box by the traffic passing through

it during the time period of interest [to,tf], when tf is such that

x(tf) = 0. Consequently, expression (2.5) is exactly the total delay
in the box experienced by the class of messages represented by x(t).
Hence, the total delay experienced by all the messages as they travel

through the network during [to, tf] is given by

t

D = > xi(t) at (2.6)
e, L3

i, jeN, J#4

where tf is defined as the time at which all the message storage state

variables xg go to zero. Priorities can be accommodated in the cost

j

functional (2.6) by associating non-equal weightings ai to the appro-

UL Ty PR e e
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priate state variables, so that we have

e

3 odxd (o] at (2.7)
£ 3 1 3
tO 1,9

[
]

lIJENIj#l

with tf defined as above. A logical fashion in which to assign priori-

ties is by destination, in which case ai = ag ¥ k,L # j. Cost func-

tional (2.7) is then a measure of total delay weighted by destination.

We now have all the elements needed to state our optimal control prob-

lem. In words, the data communication networi dynamic message routing

Sobin buirma B Ao gn' ol oo e et b g 4

i . o

problem is:

At every time t, given the knowledge of the traffic

congestion in the network (xi(t), i,j e N, § # 1), dynami-

v o - "‘

cally decide what portion of each link capacity to use for

L

each type of traffic (i.e., assign uzk(t), (1,k) ¢ L, j € N),

4
so as to minimize the specified cost functional (i.e., total ﬂ
delay if ag =1 ¥ i,j, i # j) while bringing the traffic
from a specified initial level to zero at the final time. %

To facilitate the expression of this problem in compact mathemati-
cal form, we define the five column vectors - a, x, u, C and a - whicn
are respectively concatenations of the inputs, state variables, control ]

variables, link capacities and cost functional weightings. Denote




n = dimension (a)

dimension (x) = dimension (@), m = dimension (u) and

card (L). For a given network topology we define

r dimension (C)

]

the n X m matrix B as follows: associated with every state variable xi

is a row 9? of B such that
i uj + uj 2.8
o= m%n 1% igh) ' g
8#3
i,j eN, 5 # i.

The matrix B is analogous to the incidence matrix which describes
flow in a static network. However, a fundamental distinction from the
static flow situation is that we do not require conservation of flow at
nodes as we have the capability of message storage in nodes. Note that
B is composed entirely of +l's, -1's and 0's and that every column of
B has at most two non-zero elements. If a particular column has exactly
one non-zero entry then it is -1.

Similarly, we define the r X m matrix D: associated with every

link (i,k) is a row g? of D such that

fﬁic (2.9)

ik
represents the constraint (2.4). The elements of D are O's and +1's

only, and each column has precisely one +1.

We may now compactly express the linear optimal control problem

with linear state and control variable inequality constraints which

represents the data communication network dynamic message routing
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problem previously stated:

Find the set of controls u as a function of time and

state
u(t) = u(t, x) te [ty tl (2.10)

that will bring the state from a given initial condition

x(ty, = x5 to i(tf) = 0 and minimizes the cost functional

tr

J = lo'x (t))at (2.11)
t

0
subject to the state dynamics

x(t) = B u(t) + a(t) (2.12)

and constraints on the state and control variables

x(t) > 0 ¥te [ty t] (2.13)
2EBES

u (2.14)
25

Note that a(t) must be such that the state is controllable to zero
with the available controls. Conditions under which this is true are

given for a special case in Section 3.2.2.

2.5 Discussion of the Optimal Control Problem

Before engaging in the details of the solution to (2.10)-(2.14),

some discussion regarding the validity of the problem statement is
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appropriate. To begin, we have stipulated inputs which are known expli-
citly as a function of time, whereas computers certainly operate in a
stochastic user demand environment. Secondly, the requirement that all
the storage states go to zero~a£ some final time is not consistent with
a network continually receiving input and storing messages in a steady
fashion. Also, as pointed out in Section 2.3, we have ignored upper
bounds on mes. age storage capacity. Finally, by specifying a feedback
function of the type (2.10) we are assuming that total information re-
garding storage is available throughout the entire network for controller
decisions. In practice, one may wish to consider schemes which allow
for the control decision to be made on the basis of local information
only, so called distributed control schemes.

With the above drawbacks in mind, we now provide justification for
our approach. We begin by pointing out that none of the assumptions
made thus far are inherent in a basic state space model. These have
simply been invoked to provide a problem formulation for which there
exists some hope of obtaining a reasonable solution at this early stage
of experience with the model. Also, they may not be as limiting as
they first appear. For instance, one possible approximation for the
situation with stochastic inputs is to take into account only the en-
semble average rates of the inputs. We then design the routing strategy
by solving (2.10)-(2.14) with these averages serving as the determinis-
tic inputs a(t), and employ the controls thus obtained in the operation

of the network. Such a strategy may prove to be reasonably successful




=41~

if the variances and higher moments of the distributions of the inputs
are small compared to the means.,

Next, the requirement that all states go to zero at the final time
may correspond to a situation in which one wishes to dispose of message
backlogs at the nodes for the purpése of temporarily relieving conges-
tion in the network locally in time. This procedure may represent that
portion of :n overall scheme during which inputs are appropriately regu-
lated or no longer forthcoming. In the latter case we may refer to the
resulting operation as a "minimum delay close down procedure".

Elimination of the state variable upper bounds is not always
limiting, as we shall discover for a class of single destination network
problems studied in Chapter 4. In this case, the optimal routing strat-
egy never requires any state to exceed its initially specified value,
which certainly must be within the available storage capacity.

Finally, the assumption of a centralized controller may well be
valid in the case of a small network. An example of this is the IBM/440
network. See Rustin [1972]. At any rate, obtaining the routing strat-
egy under this assumption could prove extremely useful in the determina-

tion of the suboptimality of certain decentralized schemes.

2.6 Previous Work on Optimal Control Problems with State Variable

Inequality Constraints

Pioneering research into the problem of the optimal control of
dynamical systems involving inequality constraints on the- control vari-

ables was performed by Valentine [1937] and McShane (1939]. Problems
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also involving inequality constraints on functions of the state varia-
bles alone were not treated until the early 1960's, probably motivated
by the emerging aerospace problems of that time. Pontryagin [1959]
provided the setting for the new approaches with the introduction of

his famous maximum principle, a landmark work in the field of optimal
control. Gamkrelidze [1960] studied the situation in which the first
time derivativ of the state constraint function is an explicit function
of the control variable, or so called "first order s;ate variable in-
equality constraints." Note from equations (2.12) and (2.13) that this
is our situation. This work was devoted to finding necessary conditions
in the form of multiplier rules which must be satisfied by extremal
trajectories. Berkovitz [1962] and Dreyfus [1962] derive similar re-
sults from the points of view of the calculus of variations and dynamic
programming respectively.

Subsequent works involved with necessary conditions have been
devoted primarily to unravelling the technical difficulties which arise
when a time derivative higher than the first is required to involve the
control variable explicitly (e.g. Bryson, Denham and Dreyfus [1963],
Speyer [1968] and Jacobson, Lele and Speyer [1971]). The literature is
quite often at variance with regard to the necessary conditions asso-
ciated with this problem, although the later work cited appears to pre-
sent a satisfactory resolution. At any rate, we shall not be concerned
with these differences as our problem involves only first order state

constraints.
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Computational aspects of the problem are dealt with in Ho and

Bretani [1963] and Denham and Bryson [1964]. Both works present itera-

tive numerical algorithms for the solution of the open loop problem,
the procedure discussed in the latter being essentially an extension
of the steepest-ascent method commonly used in control problems uncon-
strained in the state. As such, it appears doubtful that this algorithm
would exhi. t acceptable convergence properties for our linear cost
problem, particularly in the vicinity of the optimum. Ho and Bretani
[1963] report that this is alsu Liue of their algorithm,

Little theoretical and computationally oriented attention has been i

|

paid to the class of control problems with state variable inequality j
constraints and control appearing linearly in the dynamics and perfor- ,
mance index. In this case, the control is of the bang-bang type and 1
the costates may be characterized by a high degree of nonuniqueness. 1
Maurer [1975] examines the necessary conditions associated with this
problem when the control and state constraint are both scalars, and |
presents an interesting analogy between the junction conditions asso- E
ciated with state boundary arcs and singular control arcs. However,
no computational algorithm is reported,

Perhaps the most interesting computational approach presented for
the all linear problem is the mathematical programming oriented cutting
plane algorithm of Kapur and Van Slyke [1970]. The basic algorithm con-
sists of solving a sequence of succeedingly higher dimensional optimal

control problems without state space constraints. Under certain hypo-

| —.
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theses they are able to prove strong convergence of the control to the
optimum. The drawbacks to this approach are that the state of the
augmented problem may grow unreasonably large, and that even uncon-
strained state linear optimal control problems may be difficult to solve
efficiently. In the same paper Kapur and Van Slyke [1970] suggest for-
mulating the problem as a large linear program through discretization

of all constra...ts, a more or less brute force approach which is dis-
cussed briefly in Section 2.7.1.

Common to all of the approaches described above is that none
broach the difficult problem of obtaining feedback solutions to the
state constrained optimal control problem. In fact, the application of
necessary conditions to arrive at feedback solutions is not a common
occurrence even for unconstrained state problems. Notable exceptions
are the linear time-optimal and linear quadratic problem, for which the
feedback solutions are well known.

In light of these facts, in order to solve problem (2.10)-(2.14),
we must first develop and understand the necessary conditions associated
with optimal solutions and creatively apply them to obtain a feedback
solution. Certainly, we must fully exploit the total linearity of our
problem, which has not been done heretofore. As is usually the case,
we shall be forced into making even further assumptions about the prob-
lem in order to achieve our goal. This overall effort constitutes the
primary mathematical contribution of this work, and is the subject of

Chapters 3-5.

AT




-45-

2.7 Open Loop Solutions

Although our foremost goal is the development of feedback solu-
tions to the optimal control problem of Section 2.4., several open loop
solutions have received consideration. The principal advantage of
these approaches is that they apply to inputs represented by determin-
istic functions of time of arbitrary form. Also, at least in principle,
open-loop solutions may be implemented as feedback schemes by continu-
ally recalculating them in time with the current state taken as the
initial condition for each problem. As such, open-loop solutions are
worthy of brief mention at this time, but we shall not pursue these

particular approaches further in this thesis.

2.7.1 Linear Programming Through Discretization

This technique is a rather standard approach for linear optimal
control problems. See, for example, Kapur and Van Slyke ({1970]. We
first begin with the assumption that the inputs are such that the state
can be driven to zero with the available controls. Next, we select a

is

time T which is sufficiently large to insure that T > tf, where tf

such that i(tf) = 0. To discretize, we divide the time interval (0, T]

into P parts, each of length At = tp'tp-ll pe [, 2, »ssp Ple We then

make the Cauchy-Euler approximation to the dynamics

i(tp) = [5(tp+l) = i(tp)]//\t. (2.15)

With this approximation, equation (2.12) may be written




x(t ) = x(t ) + Atfa(t ) + B u(t )], (2.16)
A >/ = P - P

¥#pe (0,1, ..., P-1]

and the performance index may be approximated to first order by the

discrete expression

P
T
Ig= 2 O x(e ) (2.17)
p=0

In this format we have the following constraints:

D E(tp) <c (2.18a)
u(t ) >0 (2.18b)
= 2=
xte ) > 0 (2.18c)
= ol

¥p € 10, L, «oop Pl.

We now consider the i(tp) and g(tp) ¥Ype [0, L, ..., P] to be
the decision variables of a linear programming problem. The total
number of such variables is (n+m)P. The non-negativity constraints 5
(2.18b) and (2.18c) are consistent with standard linear programming !
format.

Since (2.17) is a linear function of the decision variables, we
have a linear programming problem with nP equality constraints (2.16)
and rP inequality constraints (2.18a). The general format of the
program is known as the "staircase structure", a form which has re-
ceived considerable attention in the programming literature. Such

works are devoted to exploiting the special structure of the problem in
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order to reduce computation through application of decompositioﬁ tech-
niques. See, for example, Manne and Ho (1974]. Cullum [1969] proves
that as the number of discretization points P goes to infinity, the
solution to the discrete problem approaches the optimal solution of the
original problem. However, for a reasonable size network and for P
sufficiently large to insure good quality of the approximation, the size
of the lin-:ar program (both in terms of the number of variables and the
number of constraints) becomes prohibitively large for practical appli-
cation. For this reason, this ' 'nique has bLcen applied only for the
purpose of obtaining sample solutions to provide insight into the pro-

perties of optimal solutions.

2.7.2 Penalty Function Method

Optimal control problems with inequality constraints on the state
(and/or) control have frequently been solved in an open-~loop fashion by
converting them to a sequence of problems without inequality constraints
by means of penalty functions. One such technique is presented by Las-

don, Warren and Rice [1967]. The penalty function detailed in that

paper works from inside the constraint, the penalty increasing as the

boundary is approached. Applying this technique to our situation, the
state variable inequality constrained problem (2.10)~(2.14) is converted H

to a problem without state constraints by augmenting the performance

index with a penalty function as follows:
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T
N 3 3|0
g = Z (x; (£) + €]/x] (1)) at (2.19)
0 i,J
€d > o0,

EadE N A

The modified problem is then to minimize (2.19) subject to the
dynamics (2.17) and the control constraints (2.14).

Since the penalty function term

T
By [(e?l/x?l(t))dt] i,jeN, i #14 (2.20)
0 i,3
approaches infinity as any xi approaches its boundary xi = 0, we would

speculate that the minimizing solution remains within the constrained

region x > 0. 1In Lasdon, Warren and Rice [1967] it is shown that this

conjecture is true, and further that the minimizing control as a func-

tion of time and the minimizing cost approach those for the constrained

problem as max (Ei) *4.0 i,j € N i # j. Also, since we are approach-
i,3

ing the const;aint boundary from the interior, any solution for the

unconstrained problem is also feasible for the constrained problem.

In order to implement this technique, we need to solve the uncon-

strained problem by any appropriate numerical technique for successively
decreasing values of Ei. Gershwin [1976] has created a program for tle
solution of the penalty function approach to this problem in which he

utilizes a modified form of differential dynamic programming for each
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unconstrained minimization. The computational efficiency of the al-
gorithm is greatly enhanced by the exploitation of parametric linear

programming techniques. Whecther or not this scheme encounters numer

3

difficulties as Ei grows very small remains to be determined.

ical




Chapter 3
FEEDBACK SOLUTION TO THE OPTIMAL

CONTROL PROBLEM WITH CONSTANT INPUTS

3.1 Introduction

We have formulated the data communication network dynamic message
routing problem as the linear optimal control problem of Section 2.4.
In this chapte we develop the fundamental theory underlying a novel
approach to the synthesis of a feedback solution to that problem. The

technique is predicated upon the assumption that all inputs to the net-

work are constant in time. In this section we present a brief review

of the development.

We begin by presenting the necessary conditions for the general
deterministic problem (inputs not constrained to be constant) and dis-
cuss these conditions in some detail. We then show that these condi-
tions are also sufficient, a most fortuitous situation since it guaran-
tees the optimality of trajectories which we eventually shall construct
using these conditions.

The subsequent discussion is restricted to the constant inputs
case. Based exclusively on the necessary and sufficiency conditions,

a geometrical characterization of the feedback space for constant inputs

is presented: the regions of x-space over which the same controls and

~50=
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sequence of states on and off boundary arcs are optimal are convex poly-
hedral cones in the state space. It is this special property (a result
of the total linearity of the problem) which embodies the adégtability
of the constant input formulation to the synthesis of a feedback solu-
tion. What one needs is an algorithm to specify these regions and the
appropriate controls.

Next, we present several simple examples to illustrate how these
regions may be constructed. This is accomplished by producing a certain
set of optimal trajectories backward in time from the final state x = 0.
Each portion of these trajectories generates one of these convex poly-
hedral conical regions, thereby providing the optimal control in that
region. If a sufficiently complete set of trajectories is calculated,
we manage to find enough regions to fill out the entire space.

The remainder of the chapter is devoted to the extension of this
concept to the general network optimal control problem with constant
inputs. Taking the lead from the examples performed, an algor-
ithm is presented for the construction of the conical regions from a
comprehensive set of backward optimal trajectories. This algorithm is
in general form, and several specific issues are raised regarding its
execution. An issue of central importance is the determination of the
appropriate set of costates required by the algorithm. The resolution
of this question is essentially geometrical in nature, relying upon the
interpretation of the Hamiltonian as a continuously rotating hyperplane.

In fact, many of the arguments are geometrical, so that we frequently

L]
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use two and three dimensional examples for illustration of the ideas.
Unfortunately, there are several characteristics associated with
the backward construction method which complicate its formulation as a
compact computational algorithm for the general network model. These
properties are introduced by way of examples in the Section 3.3.4.
Looking ahead, however, we are able to show in Chapter 4 that these
bothersome pri nerties are non-existent in the case of problems involving
single destination networks with all unity weightings in the cost func-

tional.

3.2 Feedback Solution Fundamentals

3.2.1 Necessary and Sufficiency Conditions

The necessary and sufficiency conditions to be presented are valid
for arbitrary deterministic inputs. For ease of reference, we restate

our problem here.

Minimization min J(x(t)) (3.1)
E(t)eu
tf T
Performance Index J(x(t)) = [a x(t)]dt (3.:2)
t
0
Dynamics i(t) = B u(t) + a(t) (a3}
Boundary Conditions i(to) = X, i(tf) =0 (3.4)
State Constraints x(t) >0 ¥te [to, tf] (3.5)
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Du(t) £ C b
Control Constraints u ¥t e (to, tfl (3.6)
u(t) > 0
Theorem 3.1 (Necessary Conditions)
Let the scalar functional h be defined as follows
A T b T
h(u(e), A(t)) = A (t)x(t) = A (t) [B u(t) + a(t)]. (3.7)

A necessary condition for the control law u*(-) € U to be optimal

for problem (3.1)-(3.6) is that it minimize h pointwise in time, namely
T T
AT(t)B u*(t) < A (t)B u(t) (3.8)
u 5
¥ u(t) € ¥te ltg, t.]
The costate A}t) is possibly a discontinuous function which satisfies
the following differential equation
-dA(t) = adt + dn(e), t € [t , t.] (3.9)

where componentwise dn(T) ‘satisfies the following complementary slack-

ness condition

3 j " *
xi(t)dni(t) =0 )¥teE€E [to. tfl (3.10)
dni(t) <0 i,9 & Ny 4 # 4. (3.11)

The terminal boundary condition for the costate differential equation
is
l(tf) =V free (3:13)

and the transversality condition is
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T .
A(ep)x(ty) = 0. (3.13)

Finally, the function h is everywhere continuous, i.e.

h(u(t?), A)) = hath, reh) (3.14)

¥t € [to, tf].

Proof:

Jacobsorn, Lele and Speyer [1971] present a generalized Kuhn-Tucker
theorem in a Banach space for the minimization of a differentiable func-
tion subject to inequality constraints. For our problem, it calls for

the formation of the Lagrangian

t t

— £ £ .

J =[ gTi(T)dT +f _)\_T(T) (B u(t) + a(t) - x(1)ldr
t t

o T T

+ an () "x(T) + Vox(ty) (3.15)
t
0

where N is an n X 1 vector adjoining the state constraints which satis-

fies the complementary slackness condition

t
b
f an"(Dx(1) =0 (3.16)
%o
an(t) <0 (3.17)

¥ 1T € .
{ R [tol tf]
The vector vV which adjoins the final condition is an n x 1 vector of

arbitrary constants.
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For u*(-) to be optimal, J must be minimized at u*(+) where x(-),

x(t.) and t. are unconstrained and u is constrained by u € U. Taking

f

the differential of J with respect to arbitrary variations of x(°),

i(tf) and tf we obtain

tf ¢ i
ajJ = f a 8x(T)dT + ax(to)de,
t

0
te T . te T
- A (m)éx(t)dt + dn (1)6x(1)
ty t,
L
+ vidx(ty) (3.18)

where 6£ is the variation in x for time held fixed and
dx(tg) = Gf_(tf) + x(t)de, (3.19)

is the total differential of x(tf). We next integrate the third term

of (3.18) by parts and rearrange to obtain

tg

dJ =f 65T(r) [adt + dn(t) + dr(1)]
t

0

T T
A (E8x(EL) + ) (tg)8x(ty)

+ g_Tgc_(tf) dtg + y_Tdi(tf) . (3.20)

Since the initial conditions are fixed we have 61(t0) = 0. Substituting

for di(tf) from (3.19):

“e o om

aJ = 8x (1) [adt + dn(t) + dA(1)] +
t

0




P T
+IY - A (£ )16x(t)

+ k(e + V(e ]t (3.21)

£
Now, in order for J to be stationary with respect to the free variations

Sx (1), Gz_c_(tf) and dt_ we must have

f
adt + dn(T) + dA(T) =0 (3.22)
Altg) =y free (3.23)
vix(t) = AT (e)x(e) = ulx(ty). (3.24)

Equations (3.16) and (3.17) together with the constraint x > O imply
1, 3 o
dni(t)xi(t) 0 ¥Te€ [to, tf] (3.25)
ilj € N, J # ST
tf T "
If we integrate the term A (T)x(1)dT by parts in equation
t
0

(3.15) and substitute equations (3.16) and (3.22)-(3.24) into (3.15)

we obtain

t
3=f FAT(m B u(n) + a(r)dr. (3.26)

%

In order for J to be minimized with respect to g(-)EU, the term

A (1) B u(r) must clearly be minimized pointwise in time, that is

AHoB ur () < AT (0B wm (3.27)

vult) el , te [ty tol.
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Thus, we have accounted for equation (3.8), leaving only (3.14) to be
proven.

To this end, let us assume that we have an optimal state trajec-
tory x*(t) and associated costate trajectory A(t), t € [to, tf]. Then
by the principle of optimality, for any fixed T < tf, the functions
x*(t) and A(t), t € [to, T], are optimal state and costate trajectories
which carr Z the state from X5 to g(tf) = x(T). Hence, all of our pre-
vious conditions apply on [to, T] with i(tf) = x(1T). Applying the

transversality condition (3.24) alL tf = T, we ohtain
Moxm = -ax. (3.28)

Since equation (3.28) holds for all T € [to, tfl and x(T) is everywhere

/ T ¢ - :
continuous, then A (T)x(T) must be everywhere continuous. This proves

equation (3.14). @ Theorem 3.1

All of the necessary conditions which refer to the functional h
defined in (3.7) also apply to the more general (and familiar) func-

tional called the Hamiltonian defined as
T T y T
H(x(t), u(t), A(t), p(t)) = a x(t) + A (t)x(t) + p (£)x(t). (3.29)
The vector of multiplier functions p(t) is defined componentwise as

: and (¢
pj (t) = _ji‘—l (3.30)
i dt ’

and therefore ui is defined only at points for which ni is absolutely

continuous. We need not be concerned with this technicality when we

it

PR vy




S e

s

use h, which still embodies the important properties of H for our
problem.

For emphasis, we shall discuss next the nature of the costates as
functions of the corresponding states as determined by equations (3.9)-

(3.10). At points of absolute continuity of ni, the associated costate

differential equation may be expressed in the familiar form

bl (3.31)

When the s:ate xg >0 (xi is said to be on an interior arc) then equa-

tion (3.10) implies dni = 0, and equation (3.30) gives uz = 0. There-

fore, equation (3.31) reduces to

-i?(T) = a? when x?(T) 250k (3.32)
i i 3

When the state xi =0 (xz is said to be on a boundary arc), its costate
is possibly discontinuous, depending on the nature of ni. At points

i is absolutely continuous, we have from equations (3.10)

and (3.11) that dnz < 0 (since xi = 0), and therefore equation (3.30)

for which n

implies uz(t) < 0. Hence,

2 =al + uz(r) 3 (3.33)
l when xi(T) = 0%

ui(T) <0 (3.34)

On the other hand at times 1p when nz experiences jumps of magni-

j

i

tude An

(Tp), equation (3.11) indicates
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Example of State-Costate Trajectory Pair




Ani(Tp) <0 (3.35)

and from equation (3.9) we have
AX?(T ) = A?(r+) - Xj(r_) = -Anj(T )20, (3.36)
i p 1 P i p 1 p —

That is, jumps in the costate are always positive. The above situations
are depicted in Figure 3.1 for a possible state-costate trajectory pair.
The times at which the state enters or exits from a boundary arc

are called boundary junctions. Note that the minimum value which the

slope of tne costate may attain on or off a boundary arc is «11. Aside
from jumps, a characteristic of the costate which distinguishes the
state constrained problem is the possible non-uniqueness of the costate

for a given optimal trajectory. As such, it is clear that the costates

may not be interpreted as the partial derivative of the optimal cost

with respect to the state, commonly known as the influence function.

Furthermore, the non-uniqueness of the costate presents special impli-
cations for the feedback scheme to be developed. An example of this
behavior and a discussion of its significance is presented in Section
3:.3:4.2.

In general, any trajectory obtained from a set of necessary condi-
tions is an extremal, and as such is merely a candidate for an optimal
trajectory. Fortunately, in our problem it turns out that any such
extremal trajectory is actually optimal, as is shown in the following

theorem.

‘ _J
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Theorem 3.2

The necessary conditions of Theorem 3.1 are sufficient.

Proof:

Let x*(t), u*(t), A(t), n(t) satisfy the equations (3.2)-(3.6)
and the necessary conditions (3.7)-(3.14) of Theorem 3.l. Also, let
x(t), ul(t) be any state and costate trajectory satisfying (3.2)-(3.6).
Then

§J

J(x) - J(x*)

t
f - a_T('r)(gc_(r) - x*(1))dr
%o

t
f
=f -aT () - & (1) (x(T) - x*(1))
t
0

by substituting from (3.9) and expanding obtain

t

=f F el marm - xman) + x* (DaA(r) + x* (an ().
t
0

t

From equation (3.16), f q i*T(T)dQ(T) = 0. We now integrate the first
t0

and third term in 6J by parts:

2
£ ¥ T T
ft X (DA (D) = X (e )x(tg) = A (£ x(ty)
0

tf T :
—f A (D) x(T)at
t

0
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t
f fxfmanm = Mg - 2egx )
1=

0
t -
..f flT(T)_{*(T)dT.

+

[¢]
Now, by (3.4)

and

if
%
(ad
1

x(ty)

<|>X

x(tg) = x*(t))

]
=]
.

Substituting these expressions we obtain

t

83 =f fofmxm - Tmxrnar
t
0

€
-f f T man ()
t

t
=f ff(r)g(g(r) - u*(t))ar
t

t
-f fiT(T)d_rl(T).
t

But by (3.8)

t
f FAT B - v > 0
o

and since x(t) > 0 and dn(t) < O we have

t
f 3 _{T(T)dﬂ(T) < 0.
t

0
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Therefore 6J > 0 % u(-) e U, x(-) > 0. ® Theorem 3.2

Although it is not immediately apparent how one may utilize the
necessary conditions to obtain optimal solutions (this if most often
the case), certain fundamental characteristics of optimal solutions may
be deduced immediately from the form of these conditions. We begin this
discussion by noting that finding the optimal control function u*(-)
reduces from (3.8) to solving at every time T € [to, tf] the linear

program with decision vector u(t):

]

ARG MIN [f(r)g'(_(r)l

u* (1)
u(n) el

"

ARG MIN [AT(T)EE(T)] (3:.37)
u(m)el

R EC
u
0

1=
|v

This is a fortuitous situation, since much is known about characterizing
and finding solutions of linear programs. We know, for instance, that
optimal solutions always lie on the boundary of the convex polyhedral

constraint region U,

We now proceed to represent the solution to the linear program
(3.37) for the specific form of the matrices B and D which correspond
to our network problem. The minimization can actually be performed on

one link at a time. Consider the link (i,k}] and a possible set of
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associated controls
ul 2 ui—l ui+l uN
5t it e Mg o Mg b wear Beps

A given control may appear in one of the two following ways:

1) uj enters into exactly two state equations:

ik

ij(t) = -ul () + oo al

1 ik i

.5 ; j (3.38)

% () = sul (8] * o+ o8

2) ujk enters into exactly one state equation:
§¥(t) = -u5 £ # gt (3.39)
i ik i

Hence, all controls on link (i,k) contribute the following terms to

l\_TB u:

1 i il
(Xk(t) - Ai(t))uik(t)

2 2 2
+ (Ak(t) - Ai(t))uik(t)
i-1 i-1 i-1
# s + (Ak (t)-)\i (t))uik (t) (3.40)
i+l i41 i+l
4 (Ak (t)-xi (t))uik (t)

N N N
P e (Ak(t) ~ Xi(t))uik(t)

where At(t) = 0. Equations (2.4), (3.37) and (3.40) determine




The optimal control law at time t on (i, k):

o 3 -
° uik(t) = C, and uik(t) =0 ¥i3#L

ik

: ') ') j j
if (Ak(t) - Ai(t)) < (kk(t) - Ai(t)) ¥ 3 # L

) L
and (Xk(t) = li(t)) < 0.

L

L+1
Y uik(t) + Uy () + ... +

Lo ok 2 B
if (Ak(t) - Xi(t)) =0 (A

L+1

k

u (t) =C

ik ik

j
uik(t)

IS Ll SR
X

Loy Bl a8
= (Xk(t) Xi(t)) S (Xk(t) Xi(t))

4§ ¢ [R, R+1,..., m]

'3 ['} 2+1 L+1
and (Ak(t) - Ai(t)) = (Ak (t)—ki BN = .
m m
= (Xk(t) - Ai(t)) < 0
') L+1 m
o uik(t) + uik (t) + ... + uik(t) o Cik
3 =
uik(t) =

; L X
if (Ak(t)—li(t)) = (A

= ettt m
= (Xk(t) = Xi(t))

and (Xi(t) - A e
b 3

241

k

0

(t) - xi*l(c)) o

¥ 3¢ (2, W41,

"

saer Ml

(3.41)

(3.42)

0 %3¢ [2,8+41,...,m]

(3.43)

0 % 4gI[2,2841,...,m



The actual computation of the optimal control at time t requires
knowledge of A(t), which in turn requires knowledge of the optimal state
for time greater than or equal to t. This is the central difficulty in
the application of necessary conditions in the determination of a feed-
back solution. The remainder of this thesis is essentially devoted to
demonstrating how this difficulty may be surmounted for our problem.

However, v~e may immediately deduce several properties of the opti-
mal control from examining the general form of (3.41)-(3.43). It is
evident that the quantities which determine the optimal controls are the
coefficients of the form (Xa(t) - Ai(t)) which multiply the control
uzk(t). The only situation under which it is ever optimal to have ugk(t)
strictly positive is if (Xi(t) - Ai(t)) < 0. 1In words, this condition
says that it is optimal to send messages with destination j from node i

to node k at time t only if the costate associated with xz(t) is greater

]

than or equal to that associated with x

(t). This fact gives rise to a

very interesting analogy: The flow of messages in a data communications
network can be roughly visualized as the frictionless flow of fluids in

a network of pipes with storage at tanks in the nodes. We may then

relate the costates X;(t) and Ag(t) to the pressures at the storage

) and xi respectively, and the difference (Ai(t) - Xi(t)) to the

areas Xx
k

associated pressure difference. In this vein, we shall refer to

j

(Ak(t) - Ai(t)) as the costate difference which exists at time t between

node i and node k and is associated with the traffic going to destina-

tion j. It is therefore optimal to send messages of a given destination

. _ , . II'I“' I I



from one node to an adjacent node only if the costate difference is nega-
tive or zero.

According to equation (3.41), if the costate difference associated
with destination j on link (i,k) is strictly negative and less than the
remaining costate differences on this link, then the optimal control is
uzk(t) = Cik and all other controls are zero. However, equations (3.42)
and (3.43) .eveal that when two or more costate differences on the same
link are non-positive and equal, the associated optimal control will not
be uniquely determined. In these situations, the optimal solution set is

in fact infinitely large. Such non-uniqueness is a fundamental property

of linear programs.

3.2.2 Controllability to Zero for Constant Inputs

Henceforth we shall be considering only the situation in which all

the inputs are constant functions of time over the interval of interest

t e [to, tel. The utility of this assumption for the representation of
data network operation is discussed in Section 5.1. In this section,

we present a simple theorem which characterizes all those inputs which
allow the state to be driven to zero under given link capacity cons-

straints. We begin with a definition:

Definition 3.1: We denote by

A= {x|-x =Buanduell C R" (3.44)

the set of feasible flows attainable through the available controls.
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The reason for the negative sign in the definition of 2" is basically

ane of notational convenience. We shall also refer to 4 as the x-con-

straint figure.

Note that since U is a bounded convex polyhedron in
R : ; . m n =
and B is a linear mapping from R to R, then# is a bounded con-

vex polyhderon in R™.

Theorem 3.3 ("ontrollability to zero, constant inputs)

All initial conditions of the system (3.3)-(3.6) are controllable

to zero under constant inputs if and only if
acInt(@) (ac R*, & c RY

where Int(Z) denotes the interior of the x-constraint figure.

Proof: Suppose a € Int(4).

Figure 3.2 x-Constraint Figure
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We shall proceed by showing that it is possible to pick a control
corresponding to a feasible flow which simultaneously brings all compon-
ents of any initial state x(0) to zero.

There is a neighborhood N(a, €) which lies entirely in Intti) for
€ > 0 sufficiently small. See Figure 3.2. Consequently, we may pick

3

a constant control u' such that for all xi

j
- x; (0)
= x|

3

where gi is the row of B corresponding to x5 and x

2(0) is the corres-
ponding component of x(0}. The norm is in the Euclidean sense. Apply-

ing the control u' we obtain

1)
. y X (O)
x?(t) = Eig' ¥ a? = =€ i i
& : (o) ||

Since € > 0, all componehts of x(0) are brought to zero in the time

3
L. ey
g €

it

On the other hand, suppose that a ¢ Intbk). Then a falls either
on a boundary of 4 or in the complement of.é'with respect to Rn. It
now must be shown that in either case there exists some initial condi-
tion which is not controllable to zero.

We begin with the case in which a falls at a boundary point of .#2";

that is, a falls on a face of the convex polyhedron.}; As a prelimin-

ary, we recognize the fact that since all of the components of a are
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non-negative, then the face oféi‘on which it falls lies at least par-
tially in the non-negative orthant of Rn. It is not difficult to see
that any face of;é'which lies in the non-negative orthant of R" has
the following properties:

(i) Consider the hyperplane which contains the face. Then the
coefficients of the equation of the hyperplane are all non-negative;
that is, the °'nit normal vector to the face has all non-negative com-
ponents.

(ii) At least one of the components of the unit normal vector
is strictly positive.

Let n denote the unit normal vector to the particular face of,;'

on which a lies. See Figure 3.3.

Figure 3.3 Attainable Flows in the Presence
of Constant Inputs
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Now, since -x = -B u - a it is evident from Figure 3.3 that a
given flow —i can be realized by a feasible flow -B u with inputs a

if and only if

£

* n<o. (3.45)

We now proceed to show that if a lies at a boundary point of .4,
then we can always find some initial condition which cannot be brought
to zero with the available controls. To this end, consider the follow-
. n
ing subset of R":

v=1{xeRx] =0 ifn3>0}

3

where ny is the ccmponent of n corresponding to xi. Now, choose any

initial condition such that i(to) £ Y. Clearly such a point always
exists. We now shall show by contradiction that any such initial condi~
tion can never be brought to the final state i(tf) = 0. Suppose that |

the state can be brought to zero at some time t Then the state must

£

hit y at some time T' st Therefore, at some time T" < T' we must

£

*L L
have xk(T") < 0 for at least one component X of the state vector such

Bl

that ni > 0. The existence of such a component is guaranteed by
property (ii) above. Also, all of the other components of x associated
with positive components of n must be such that they have non-positive
time derivatives at T". Hence, since by (i) above all components of n
are non-negative we have

-i(T") ‘n-= 2: —ii(T")nz > 0.

ilj(_N
I#i




=

The above inequality contradicts (3.45) and therefore any x(to) gy
cannot be brought to zero.

Finally, consider the case in which ae€ Rn/kl Then it is easily
seen that there is at least one component of the state which increases
without bound for any u € U, Therefore, no initial condition is con-
trollable to zero in this case and the theorem is proved.

8 Theorem 3.3.

Controllability to zero is certainly a necessary condition for
the existence of an optimal solution to (3.1)-(3.6), although not in

itself sufficient. However, as our feedback synthesis technique will

be based upon trajectories which satisfy the necessary conditions, we
are guaranteed of their optimality by the sufficiency Theorem 3.2.
We shall therefore have no need of an explicit proof of the existence

of an optimizing control.

3.2.3 Geometrical Characterization of the Feedback Space for

Constant Inputs

In what follows, we shall assume that the controllability to zero

condition of Theorem 3.3 is satisfied. The following is a consequence

of the optimal control characterization (3.41)- 3.43), and as such is

a corollary to Theorem 3.1.

Corollary 3.1 If a = constant, then there always exists a solution to

(3.1)-(3.6) with controls piecewise constant in time and trajectory ]
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with piecewise constant slopes.

Proof:

For a given costate trajectory A(t), t € [to, tf], the optimal
control is given by (3.41)-(3.43). For those controls with unique
optimal values, the determining factor is the sign and relative magni-
tude of the associated costate difference. Over periods of time for
which these factors remain the same, the optimal control is constant
and is given by uik = Cik or u?k = 0. Those controls not uniquely

determined over certain periods of time (as in situations (3.42) and

(3.43)) may achieve any values which satisfy certain constraints, such
S B
- < o .
as jéz Ui, =G or ‘él Wik = Cik' The only additional requirement on

these controls may be that they maintain certain states on boundary arcs
over certain periods of time. Since the inputs are constant, any such
requirement may always be satisfied by constant valued controls over

the appropriate time period. As the controls have been shown to be
plecewise constant and the inputs are constant, it follows immediately
from equation (3.3) that the associated optimal trajectories have piece-

wise constant slopes. @ Corollary 3.1

We note in passing that the above corollary also holds for piece-
wise constant inputs.
The solution to the constant input problem is of the bang-bang

variety in that the optimal control switches intermittently among
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boundary points of U. Also, in situations when one or more costate
differences are zero or several are negative and equal, the control is
termed singular. Under such circumstances, the optimal control is not
determined uniquely from the laws (3.41)-(3.43). In the solution tech-
nique to be presented, this non-uniqueness will play a major role.
Owing to the bang-bang nature of the control, every optimal tra-
jectory may } -~ characterized by a finite number of parameters. We now

present a compact set of notation for specifying these parameters.

Definition 3.2

U(x) g (o, W, u } (3.46)

Sor Byr Fpr vt 2

and T (x) - {egr 0 oo tgd

ll

are a sequence of optimal controls and associated control switch time

sequence which bring the state x optimally to 0 on t € [to, tf], where

Ep is the optimal control on t € [tp, tp+l)’ plE (05 L, weap £=1]5

When dealing with the necessary conditions, an additional pro-
perty of a given trajectory which shall be of interest is which states
travel on boundary arcs and over what periods of time. This informa-

tion is summarized in the following definitions:

Definition 3.3

g & {x?lx?(r) =0 #Tet, t )} (3.47)
p it p

p+].
is the set of state variables travelling on boundary arcs during the

application of Ep'
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Definition 3.4

B(i’ = {B ’ B ¢ eeey Bf—l} (3.48)

is the sequence of sets Bp corresponding to the application of U(x) on

T(x). B(x) is referred to as the boundary sequence.

In the forthcoming development, we shall be interested in regions
of the state space which have the following property: when we consider
every point of the region to be an initial condition of the optimal con-
trol problem, a common optim#l cohtrol sequence and a common associated
boundary sequence apply to all points. Formally, we define the follow-

ing subset of R":

Definition 3.5

¢(u, B) 4 {x € R"|u(x) = U and B(x) = B}. (3.49)

Note that since any two distinct members of @(U, B) have associated with
them the same sequence of optimal controls, the number of switch times
in their respective sequences is the same. However, the values of the
particular switch times will in general be different. Suppose

X € €U, B) and X, € ¢(U, BY. Then the switching time sequences are

distinguished with the following notation:

Notation 3.1

T(x) = {tg, t], .oy g}

)
ll

(to, Ry tf}.

(3.50)

1}

T(x,)
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The above definitions are illustrated pictorially in Figure 3.4.

It may appear at first that the regions ¢ (U, B) defined above are
too special to be of any utility. However, we shall soon demonstrate
that such regions are related to the basic building blocks of the feed-
back space. With this as motivation, we begin by providing a fundamen-

tal geometric property of these regions.

Theorem 3.4 (Geometrical characterization)

Let the inputs & = constant. Let U and B be control and boundary
sequences respectively as defined in (3.46)-(3.48). Also, let ¥(U, B)
be the subset of R" as defined in (3.49). Then ¥¢(U, B) is a convex

polyhedral cone in R™,

Proof: The basic elements are embodied in the following lemmas:

Lemma 3.1. Let the inputs a = constant. Suppose X, € R" and X, € R

If X, = Yél' where Y is a scalar Y > 0, then
U(x,) = Ulx;)

and B(x,) = 5(51).

Proof of Lemma 3.1:

For the purpose of this proof, we shall consider time to be pro-

pagating backward from t

£




VG T e —

u(x,)
e
)

3
5]

€,

-

Illustration of U(x), T(x),

t

a7

9}

al

Figure 3.4
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TP P TETT TS T T T

L te

Figure 3.5 Time Convention for Proof
of Lemma 3.1

Let the optimal solution which brings the state i(to) = &y to

i(tf) = 0 be characterized by the control and switch time sequences:

U(il) = {50, 51, 5w Ef—l}
(3.51)
T(x,) = {tg, tie eevs tih

Associated with this optimal solution is the costate vector Al evolving

in backward time according to

d\; (1) = adt + dn, (1)

Ae) = v, (3.52)

T E [tg, té].

The proof shall consist of producing a switching time set T(zz) and

a costate history AQ(T) for which U(fl) is an optimal control sequence
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which brings 52 = Yx, to 0. These sets are

] —
T(x) = {tg, ], ..., i} (3.53)
where t" = Yt' (3.54)
p s P
p € [0, 1, «.-£]
d\,(T) = adT + dn,(T) (3.55)
where éa(tf) = Y&i(tf) (3.56)
and dn (7™ = ydn, (1/Y). (3.57)
To show that indeed this set optimally brings X, to 0 we have to
show the following assertions:
(1) The application of 0(51) on T(EQ) drives the state

from 0 to X,

(i1)  B(x,) = B(x,)).

= Yii backwuard in time.

(iii) n, and 52 satisfy all of the necessary conditions.

(iv) U(gl) is optimal on T(x,).

Step (i).

Since our system is time invariant, for convenience we set
t% - t; = tf = 0 as the initial time in the backward sense. Then if

we denote by xl(') and x2(') the state trajectories resulting from the

application of U(Ei) on T(§i) and T(§2) respectively, integration of

the state dynamics backward in time yields
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x, (Yt)

Yt .
- _:gz(r)dr
0
Yt |,
- xl(T/Y)dT
Gl

t
f Y x, (s)ds, s = T/v,
A 5]

Y () te bt £, (3.58)

In particular, we have

x,(ty) =x

s =YX = Y (E)). (3.59)

Step (ii).
From (3.58) we see that if any component of X, is zero on

), then the corresponding component of X, is zero on

' '
[tp, t 5

pt+l

[t;, t;+l)' Likewise, if any component of X is greater than zero on
[té, té+l)' then the corresponding component of X, is greater than zero

on [tp, tp+l)'

Step (iii).

By virtue of the fact that 8(52) = 8(51), it is easily verified
that an as defined in (3.57) satisfies the complementary slackness
condition (3.10). Since AQ is defined to satisfy a differential equa-
tion of the required form, and dnz satisfies complementary slackness,

then AQ(T): e [tf, té], is a legitimate costate trajectory.

. , ",__._,d - —
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| Step (iv).

4 The relationship between Al and AQ backward in time is

Yt Yt
A, (ye) =ft a 4t +j; dn, (1) + Yy,

f £

by (3.55) and (3.56)

Yt Yt
= a 4t + yf an, (T/Y) + Yy,
t t

f £

by (3.5/)

t t
= Yf ods +Y an, (s) + vy,
t t

f £

where s = T/Y

[}

y}_l(t) ¥te [t tl.

Definitions (3.51) imply

L}

ARG MIN (yg\_}‘(ﬂg u)
uell

since y positive scalar

2

MIN (Lg(YT)E u).
uell

The above is equivalent to

u* = ARG MIN (2\_’;\(‘1') B u)
b= uel
T e [tE”, t1'3+1) P € [0; Ly sy £=11

(3.60)

(3.61)

Ty Ty

s o At b d e e L donl A o
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u* = arG MIN (AT(T)B w) (3.62)
p e Gniy

Te [, £ ), e [0, 1; .s.5 £-1]):
R

Therefore, our supposition regarding the optimality of U(El) on T(§2)

is verified. Hence, the application of U(x,) on T(x,) = {ts, e

t1} forward in time brings the state from X, () = Yx; to x,(tf) = 0.
8 Lemma 3.1

Lemma 3.2. Let the inputs a = constant. Suppose for some x

.5 1
X, € Rn, X > 0, X, > 0, that
U(gi) = 0(52) =U
and
B(xl) = B(x,) =B.
If By = Y5 * Uy, Oyl
then
U(EB) =U
and
5(53) = B.

Proof of Lemma 3.2:

As in the proof of Lemma 3.1, we assume that time propagates back-

ward from the final time. Let the optimal solution which brings the

state from X, to O be characterized by the control sequence and switch

time set
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U(zi) =U = {30, Bip wanp Mo ok

- 1 ~£-1
3 (3.63)
T(x) = (e, ], ... tr)
respectively and similarly for Xyt
Ulx,) =0 =1{u, u, «oop u !
(3.64)

T(xy)) = {tg, tf, ..., tph.

Associated with each of the above optimal solutions are costate

vectors 51 and AQ which evolve backward in time according to

dA, (T) = 24T + dn, (T) Aep) = vy (3.65)
T e [tg, tyl
dA,(T) = 04t + dn, (T) Aeg) =y, (3.66)

T & [tf, tol.

The proof proceeds along similar lines to the proof of the pre-

vious lemma. We shall produce a switching time set T(53) and a costate

history 53(T) for which U is an optimal control sequence which brings

X, =YX, + (1-Y)x, to 0. These sets are

T(xy) = {tg +» t]' v «eus t'f"} (3.67)

where t; = Yté + (l-Y)t; (3.68)
pie [0 Ly wewy E]

dA; (1) = adt + dn,(1) (3.69)

where Aj(tg ) = y), (tg) + (l‘Y)lQ(t%) (3.70)
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and
At!
dga(tp + T) = ¥ d_rll(tp + Z;Er T)

At

+ (1Y) dny(er + T T (3.71)
P

T &[0, Atg Yo p e [0, L, ..., £
where we denote

Notation 3.2

At! = t' - ¢!
p P p-1
At; = t; = t;—l ¥ pie 10,1, el
Atlll = tlll i tlll (3.72)

p p p-l
From equaticns (3.72) and (3.68) we obtain

B = yAtl + G ey 3.73
A o YA b (1-y)A o ( )

To show that indeed the above set optimally brings x

3 to 0 we have

to show the following assertions:

(1) The application of U on T(53) drives the state from Q

to x

Xy =YX+ (1-y)>_<_2 backward in time.

5.

(ii)  B(xy)

(iii) 03 and L3 satisfy all of the nececessary conditions.

(iv) U is optimal on T(£3).

1
i
1
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, Step (i).
Since our system is time invariant, we set t' = t" = t" = t_ as

f £ f f

the initial time in the backward sense. We now denote by 31(-), X, (%) :

and 53(’) the state trajectories resulting from the application of U

on T(x)), T(x,) and T(x,) respectively and designate X, = E-Eq + a.
Integration of the state dynamics backward in time yields
ptl .
X (tl" + t) = )’( Atn' - x t
= - -1
3°p o e 1 g =-p
]
ptl | ,
= - x (YAt'+ (1-y)At")-x .t
-1 ~1
q=f_1’q q q P
by substituting (3.73)
= [ - " . % t
Yﬁl(tp) * Y)gQ(tp) &
k.
t € [0, Atg ).
Also from (3.73) we have
Atl At"
Y Atm o+ (l_Y) At"l =1 \ﬁ
1% S 3]
so that the above expression now becomes - 4
53(tp + t) = Ygl(tp) + (l~y)§2(tp)
. ae! At” |
- _)Sp_l(Y At™ + (l-Y) Atm) t
p P .
|
AE; At" |
= t) ]

' | o e "
Yﬁi(tp A At;' el + y)gQ(tp +

S
AE™ |
P




te [0, Ae™). (3.74)
p

In particular, we obtain the desired value at ts':

ig(tg') =x, = Y§1 + (1-Y)>_(_2 = Yéi(té) + (l—Y)§2(t8). (3.75)

Step (ii).

Since 5(51) = 3(52) = B, if any component of .3 is zero on

tl' t'
[p p+1)

and vice versa; also, from (3.74) we see that under this circumstance

» then the corresponding component of X5 is zero on [t;'t;+1)’

the corresponding component of X3 is zero on [t;’, t;;l). Likewise for

components strictly greater than zero. Hence, B(§3) = B.

Step (iii).

By virtue of the fact that 3(53) = B it is easily verified that an ,
as defined in (3.71) satisfies the complementary slackness condition
(3.10). Since A3 is defined to satisfy a differential equation of the
required form and dL3 satisfies complementary slackness, then la(T)'

T e [te tB'], is a legitimate costate trajectory.

Step (iv).
Integrating the costate equation (3.69) backward in time on

€t € [0, At;' ) we obtain

t t
A + €} = X (8% ) # a dt + dn, (& + T
=3P =3 p '[u.—‘-k j;n' —3 (p )
t t At!
- ia“p ) *f a dT +Y an, (e * -—l—At.., 1) +
L,., tcn p

l\ }\
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t At
+ (1-Y) f dﬂz (tp + ——P—Atg T).

P
Now perform the change of variables

At
e A_R—t"' ks

P

At"

and note that T = Ysy + (l-Y)52 by (3.73). Then

=t
13(1:;)' L) = 53(t;') + j: a dlys; + (1-Y)s,)

At! p At”
sl Atﬂl t S2=At"' t
p p
L dnl(tp +5)) + (1-7) dp_z(t:p +8,)
t t"’
)2 P
At!

t

i

fsl SE
2\_3(t;') + Y] (& ds; + dn—l(t;') + 5,))
P

Atp

By R ©
P
(1- Y) ¢ (u ds, + dg_?_(t:p +s,))

+

" 2
P

t e [0, 8e™],
p

From (3.65) and (3.66) we obtain by backward integration

At!
t

(3.76)

- sl_At"'
i At p
A (el + =t = _A_l(tp) + (u ds. + dﬂl(tp +5,))

1

Atlll
= 1%
P

(3.77)




-88-

and A "

S,= wi- t
A" 2 Atp
A_z(tp + KEET t) = Aa(tp) + » (o ds, + dg_2(tp +s,)) |

p
(3.78)
T € [0, AE™ ).
P

Substituting (3.77) and (3.78) into (3.76) obtain

At
"e _ " ] — '
53(1:9 t) = 13(1:?) + Yll(tp + A—P—t;, t) Yll(tp)
At"

= " S T T i "
+ (1 Y)Az(tp + At;' =4 Y)Lz(tp)

T € [0, AE™ ) (3.79)
P

Upon substitution of the end condition (3.70) at tf = t% = tg = tg’ v
the costate propagates in the following fashion backward in time:
At At

" . (] - "
AB(tp +t) = Y}_l(tp + —P—-A £} + (1 Y)_A_z(tp * —-E—A

tl" tl" t) (3‘80)
p P

¥pe 0,1, ..., £], tE [0, Be) ).

We now verify that for Aﬁ given by the differential equation (3.69)
with end condition (3.70), U is an optimal control sequence on T(ia)‘

By the definitions of U, T(Ei) and T(§2) we have

T
u* = ARG MIN A (t! + t)B u, t € [0, At}) (3.81)
s uell p . p
and
P
u* = ARG MIN A_(t" + t)B u, t € [0, At"). (3.82
__p ueu __2 p IR [ ’ p )
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Equations (3.81) and (3.82) imply

T & T G 83
‘Ql(tp # BB 1k < sz_l(tp + t)B u, (3.83)
#u elU, t e [0, At")
- p
and
(1-)AT(£" + £)B u* < (1-y)AT(t" + t)B u (3.84)
—=2'p T 2P =P
wu €U, te [0, ALt").
— ] P
Equations (3.80), (3.83) and (3.84) give
T T
AL(E™ + t)B u* < A_(t"™ + t)B u (3.85)
=3'p === p = =0
#u €U, te [0, At"),
-p P
that is
u* = ARG MIN AT(t'" + t), t e [0, At™) (3.86)
=5 uell =R o p

¥ipL & [0 Ly o, €15

Therefore, with 53 as defined, U is an optimal control sequence

which when applied forward in time on T(£3) Sl tg'} brings

0 4

" - m -
the state from x,(t;') = x, to §3(tf ) = 0. 8 Lemma 3.2

Lemma 3.1 implies that the regions #(U, B) are cones and Lemma 3.2
implies that these cones are convex. As each region is convex, the
interface between any two adjacent regions must be a portion of a hyper-
plane through the origin which belongs to one region or the other (we

assume for technical reasons that the number of regions is finite).




Therefore, we have established the convex polyhedral conical nature of

the regions. @ Theorem 3.4

In preparation for development of the feedback technique, we pre-
sent the following corollary to Theorem 3.1 which narrows down the

freedom of the costates at the final time.

Corollary 3.2 If any state, say x?, is strictly positive on the final

time interval [tf—l' tf) of an optimal trajectory, then Xf(tf) = 0,

Proof:

Consider a specific state x? satisfying the hypothesis. Then
since iz(T), T € [tf—l' tf], is constant by Corollary 3.1, we must
have

*k
xi(tf) < 0,

€
Moy £

Figure 3.6 Typical State Variable Approaching
Boundary at tf

Then there must exist a directed chain of links from node i to

node k (arbitrarily denote them by { (i, i+l), (i+l, i+2), ..., (k-1,k)})
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carrying some messages with destination k, that is

k k k

>
YitantEet * 00 By ealEgl > 00 woey By L6 > 0.

In order for the above control to be optimal, we must have (by (3.41)-

(3.43))
K K
>‘i+l(tf) - )‘i(tf) <0
K X
Aiealte) = Ay (0 <0
K

= <
Aeop (Eg) S 0.
From the above we conclude
k k
A > A > 0,
i(tf) 2 k_l(tf) >0

We now proceed to show by contradiction that X:(tf) = 0. Suppose

k ; oy J 23
> =
Ai(tf) 0. Then the transversality condition .z. Xi(tf)xi(tf) 0
% Fis )
implies that there must be at least one ii(tf) < 0 such that Ai(tf) < 10
But the above reasoning applied to x% implies that Ai(tf) > 0. Hence,

a contradiction. 8 Corollary 3.2

3.3 Backward Construction of the Feedback Space for Constant Inputs

3.3.1 Introductory Examples of Backward Boundary Sequence

Technigge

The construction of regions of the type ¢(U, B) will play an impor-

tant role in the synthesis of the feedback space. A basic observation
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with regard to these regions is that they are functions of the entire

future sequence of controls which carry any member state optimally to

zero. This general dependence of the current policy upon the future

is the basic dilemma in computing optimal controls. This problem is
often accommodated by the application of the principle of dynamic pro-
gramming, which seeks to determine the optimal control as a function
of the state hy working backward from the final time. The algorithm to
be developed employs the spirit of dynamic programming to enable con-
struction of regions of the type €(U, B) from the appropriate set of
optimal trajectories run backward in time. These trajectories are
fashioned to satisfy the necessary and sufficient conditions of

Theorem 3.1, as well as the costate boundary condition at t_ given in

£
Corollary 3.2.

We motivate the backward construction technique with several two
dimensional examples which introduce the basic principles involved.
In fact, throughout the thesis important concepts will be illustrated
with the simplest possible examples whenever the interests of clarity
can be served. The reader is encouraged to study these examples care-
fully, as they comprise an essential part of the exposition. Also,

one is able to grasp the general geometrical notions more readily with

a simple two or three dimensional picture in mind.
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Example 3.1

3

u 1.0

24aE =

x3
X -
1 2

3
gt

Figure 3,7 siple Single Destinatio:. letwork

The network as pictured in Figure 3.7 has a single destination,
node 3; hence, we can omit the destination superscript "3" from the

state and control variables without confusion. For simplicity, we

assume that the inputs to the network are zero, so that the dynamics are:

;cl(t)

1]

-u13(t) - U, (E) 4w, (t)

(3.87)

1}

xz(t) —u23(t) + ulz(t) - (t)

)

B R TRy T ———
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with control constraints as indicated in Figure 3.7. The cost function

e

is defined as

te
D =[ {xl(t) + x2(t)}dt. (3.88)

o

Let the vector notation be

u

12
% o )
X = u = 5
*s o

|
We wish to find the optimal control which drives any state

i‘to) >0 to i(tf) = 0 while minimizing D.
As our intent is to work backward from the final time, we list all

possible situations which may occur over the final time interval

[tf_l, tf] with respect to the states * and Xye Recall from Corollary
3.1 that the state rates *1 and *2 are constant on all intervals.
: b <
(1) X, 0
x2 = x2 =0
(ii) :22< 0
xl = xl =0
s ol <O
(iii) X
x2 < 0,

These are certainly the only situations which may occur on the
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final time interval, although we have no way of knowing a priori which
are consistent with the optimality conditions. We do know by virtue of
sufficiency that any trajectory which is optimal has associated with

it costates which satisfy the necessary conditions; and that any tra-
jectory which satisfies the necessary conditions is indeed optimal.
Hence, our first task in the analysis of each of these cases shall be
to attempt to produce a set of costates for which the control which
solves the appropriate form of (3.37) gives rise to the specified tra-
jectory on some non-zero interval of time preceding the final time.

We now consider these situations one at a time:

(1) % (1) <0, x,(T) = x,(1) =0, TeE (e, t.

2] 1

This situation is depicted as part of Figure 3.8 . We begin by

considering the time period [t tf] in a general sense without \

£-1’

actually fixing the switching time t This is simply the time period

f£-1°

corresponding to the final bang-bang optimal control which brings the

state to zero with ;1 < 0 and x, = iz = 0. We now set out to find if

there is a costate satisfying the necessary conditions for which this

situation is optimal; and if so, to find the value of the optimal con-

i trol. The linear program to be solved on T € [t._,., tel is

u*(T) = ARG MIN (A, (T)x, (1) + A (T)x_ (1))
- 2?“ 1§ €L 2 2

= ARG ﬁzz [(AZ(T)-Al(T))ulz(T) + (AI(T)-AZ(T))uzl(T)

-kl(r)ulJ(T)—xz(r)u23(1)]. (3.89)
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State-Costate Trajectory Pair

tfor Example 3.1, Case (1)

I'igure
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Now, the stipulation x, < 0 tells us from Corollary 3.2 that {

1
Xl(tf) =0 (3.90)
and since %y is bn an interior arc, equation (3.32) gives %
A = -1 TE [t )0 tel. (3.91)
This is showh in Fiqure 3.8 . Now, since we specify X, = 0 on this
interval, iis tostate equation is
—d)\z(r) =1 4t + dnz(T) (3.92)
<
dn,(t) <0
Ay(tg) =V, free TE [te ;0 tgl
where n2 is a possibly discontinuous function. We now submit that the E
costate value XZ(T) = XZ(T) =0. T € [tf-l' tf] is such that there 4
exists a solution to (3.89) for which X, < 0 and x, = 0. The reader

1 2
in fact may verify that AZ(T) =0, TE [tf—l' tf], is the only possible 4
value since Az(T) >0 or Az(T) < 0 imply by (3.89) and (3.87) that |
iz < 0 and *2 > 0 respectively. Before presenting the specific solution l
we verify that AZ(T) = iz(r) =0, TE€ [tf-l' tf], is a costate value

which is consistent with equation (3.92). First, the required final

condition xz(tf) = 0 is acceptable since the necessary conditions leave

it entirely free. Also, the differential equation iz(r) = 0 may be

realized with dﬂz(T) = -dr, which is consistent with (3.92). This
costate trajectory is pictured as part of Fiqgure 3.8 . Now, with the

costates so determined, one solution to (3.89) is




u(t) = (0.5, 0.0, 1.0, 0.5)" (3.93)

xl(T) = -1.5 xz(T) = 0 (3.94)

)=
e [tf_

l, f]'

We emphasize that the above solution is only one among an infinite set
of solutions to (3.89). However, it is the solution which we are

seeking. We now make an important observation regarding this solution.

Since Al(T) = -1 and AZ(T) =0 for T € [tf—l' tf), the control (3.93)

. . —00 -+ 00 - 00
remains optimal on T € (-, tf]. But as tf-l p xl(tf_l) .
Thinking now in forward time, this implies that any initial condition

on the xl—axis can be brought to zero optimally with the control spe-

cified in (3.94). We have therefore determined the optimal feedback

control for all points on the xj-axis! This is indicated in Figure 3.9.

Suppose now that we wish to consider a more general class of tra-
jectories associated with the end condition under discussion. What we

may do is to temporarily fix t and stipulate that the control on

f£-1

2 : % . : . "
[tf-z' tf-l) has X, negative; that is, insist that X, leave the

boundary" backward in time. As before, the initial time tf_2 of the

segment [t tf-l) is left free. The program to be solved is (3.89)

£-2'

with T ¢ [tf-z' tf-l)' Now, since x, is on an interior arc across

1

tf—l’ by (3.32) its costate must be continuous across tf-l’ that is

=¢t_.~-¢t

" e (3.95)

- +
Aty = A (eg

Since (3.92) allows for only positive jumps of Xz forward in time, we
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have
Al ) =at y=0 (3.96)
2 E= N RSO F IR g
Also, since both Xy and X, are on interior arcs on [tf—z' tf-l)’ equa-
tion (3.32) cives
Al(T) = -1
! Te [t it ) (3.97)
XZ(T) = g £-2 £-1

The resultant costate trajectory is depicted in Figure 3.8. We now

perform the minimization (3.87) ( r T € [t ). Since

gzt Ceg

t ), the solution to (3.89) is

Al(T) > Az(r) >0, 1€ [tf-2' gl

u(r) = (0.5, 0.0, 1.0, 1.0)T (3.98)
so that

il(T) = -1.5 iz(r) = -0.5. (3.99)

Therefore, the optimal control gives iz(r) < 0, which is the

situation which we desire. Once again, we see that the control is

optimal for T € (-%, tf_l]. Since xl/x2 = 3.0, upon leaving the X,

axis backward in time the state travels parallel to the line X - 3x2 =

0 forever. Now, recall that tf_1 is essentially free. Therefore, from

anywhere on the X axis the state leaves parallel to X - 3x2 = 0 with ]

underlying optimal control (3.98). Thinking now in forward time, this
implies that any initial condition lying in the region between the #

line X - 3x2 = 0 and the xl—axis (not including the x,~-axis) may be

L

brought optimally to the x -axis with the control (3.98). See

1

. -“n-illlllllllllli.“




Figure 3.9. Once the state reaches the xl-axis, the optimal control
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